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Abstract: Black Saturns have multiple horizons and so offer a testing ground for the ideas

of black hole thermodynamics. In this note, we numerically scan for phases that are in

equilibrium by extremizing total entropy in the 2-dimensional moduli space of stationary,

singly rotating black Saturns with fixed total mass and angular momentum. On top of the

known TH = TR, ΩH = ΩR configurations, we find phases that do not balance the temper-

ature and angular velocity of the ring and the hole. But these (and most of the balanced

Saturns) go away when we demand that the system is metastable, by imposing that the

Hessian of the entropy is negative definite. Metastablity occurs when the dimensionless

total angular momentum lies in a narrow window 0.92457 < j < 0.92463 of the thin ring

branch. This is consistent with the expected range of classical stability of black Saturns

and therefore may imply that thermal stability is tied to classical stability, in analogy with

Gubser-Mitra in the translationally-invariant case. We also comment on the possibility of

constructing plasma configurations that are dual to black Saturns in AdS.
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5-dimensional gravity solutions [1 – 14] are fashionable for a number of reasons. First

of all, holography relates a 4-dimensional gauge theory to 5-dimensional gravity in an

asymptotically AdS space and in particular maps 4-dimensional plasmas (Scherk-Schwarz

reduced to an an annulus) to 5-dimensional black rings [15, 16]. Secondly, 5-dimensional

gravity in asymptotically flat space is much richer than the 4-dimensional gravity of our

universe. In four dimensions, a simple argument based on the positivity of energy and

genus counting of two dimensional surfaces shows that the only admissible horizons have the

topology of S2. But in 5-D, the same positivity argument is far less restrictive. We can (and

do) have not only black holes but also black rings and their composites, black Saturns [17] as

solutions. Black Saturns, along with di-rings [18 – 20] and bi-rings [21, 22], are particularly

interesting because superimposing two objects yields tunable parameters. Such “hairy”

black objects, which are not allowed in four dimensions, can be useful for understanding

general features of quantum gravities with holographic descriptions. For example, one can

create abysses where quantum gravity effects become relevant at macroscopic scales [23]

suggesting that perhaps general relativity breaks down not at the Planck scale as measured

by a local observer, but rather as measured by an observer in the reference frame of the

holographic screen. Another popular motivation for the study of higher dimensional black

holes is that the Universe we live in might have a large, millimeter scale, extra dimension. In

this case one might produce higher dimensional black holes in high energy particle collisions,

and these might have experimentally accessible Hawking decay signatures [24, 25].

In this note we will investigate a particular set of solutions, called black Saturns.

However we hope that our philosophy and results will have some generic relevance to

multihorizon black solutions. A black Saturn is an exact solution of the five-dimensional

vacuum Einstein equations, and has the horizon topology of a black ring that encircles a

black hole. The horizon of the ring has topology S2 × S1 while that of the hole is S3. The

ring spins in the S1 direction, so that centrifugal force can stabilize it. We also allow the

hole to have angular momentum with respect to the same S1. In fact, even if we turned

off the hole’s Komar angular momentum, frame dragging from the ring would lead to a

nonvanishing angular velocity for the hole. For simplicity we set angular momenta along

the orthogonal, commuting S1 to zero for both black objects.

Besides the generic motivations mentioned in the first paragraph, one of the funda-

mental reasons for our interest in black Saturns is the fact that they offer an excellent
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opportunity to study the physics and thermodynamics of black holes with multiple hori-

zons in asymptotically flat space. The interpretation of multiple horizons poses interesting

questions which we address below. Trying to understand how black Saturns fit into our

overall picture of black holes holds the potential of a deeper understanding of how thermo-

dynamics, gravity and quantum mechanics fit together.

In asymptotically flat space black holes are thermally unstable, they Hawking radiate

away their energy and angular momentum. So the usual way in which one studies black

holes is by imagining that they are in equilibrium at a temperature equal to the Hawking

temperature of the black hole. Since the presence of two horizons leads to two temperatures,

it is not immediately clear how one should generalize this to our problem. One possibility

is to put the Saturn in a reflecting box so that the ADM mass and angular momentum are

exactly conserved, and then look for equilibria of this closed system. But this amounts to

changing the asymptotics and might be more analogous to black holes in Anti de Sitter. A

black Saturn may exist in asymptotically AdS space.1 But an exact black Saturn (or even

black ring) solution is not yet known in AdS. Besides, when we put in a reflecting wall, we

will have to worry about super-radiant instabilities.2

For these reasons, we will take another approach. We will consider the asymptotically

flat solution as an open system. The question of the thermodynamics of a spacetime with

multiple horizons is best thought of as that of a system with more than one characteristic

temperature [26 – 28], and this is what we will do. This means that we will be studying

phases that are in local thermodynamic equilibrium. To understand the sense in which we

use the word “local”, we need to look at the various timescales in the black saturn system.

Even in associating a uniform temperature to a macroscopic horizon, the assumption of

local equilibrium within each body is implicit.3 But there is another timescale that becomes

relevant if the hole and the ring are to be in equilibrium with each other, as envisaged in [29],

while being an open system. For equilibrium to hold, the hole-ring transport has to be

faster than the Hawking radiation loss. So for the black Saturn system we can distinguish

three progressively slower scales - dynamics between the microscopic ingredients within a

horizon, dynamics between the two horizons, and the Hawking leakage to infinity.

Although our black Saturns are open systems, we assume that the time scale associated

with the energy and angular momentum loss to infinity due to Hawking radiation is much

larger than the characteristic time scale of the transport which brings the hole and the

ring into thermodynamic equilibrium. Such an assumption is necessary if one wishes to

study the thermodynamic phases of a composite black object, and so was implicit in the

program initiated in ref. [29]. There are many mechanisms in various models which might

1But see our concluding discussion on what we can learn about AdS black Saturns from dual plasma

rings and holes.
2We thank Roberto Emparan for pointing this out to us.
3There are two separate issues here. One is that of the temperature itself, and the other is that of the

uniformity of the temperature over the horizon. To identify horizon temperature with the geometrically

defined surface gravity, we need the fact that it shows up in place of temperature in Hawking’s Planckian

distribution. What we are emphasizing here instead is the uniformity of this quantity over the horizon, to

make sense of which, we need to distinguish competing scales.
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validate this assumption, from tunneling between the black objects to interactions between

their fuzz in a Mathurian approach [30, 31]. With this assumption, the black Saturn has

a well-defined entropy and temperature distribution, even though it is emitting Hawking

radiation.

Since Hawking radiation is by assumption slower than the hole-ring transport, our

system is effectively closed and we can extremize entropy (while holding total mass and

angular momentum fixed) to find the equilibrium configurations. This is what we set out

to do. Since the second law of thermodynamics for a closed system implies that the total

entropy must be non-decreasing, any global maximum of the total entropy is absolutely

stable and any local maximum is metastable. Our task in this paper, then, will be to find

local extrema of the total entropy of the combined hole-ring system in the moduli space

of black saturn solutions with fixed ADM mass and angular momentum. At time scales

where the Hawking radiation becomes important, of course, this notion of stability looses

its relevance.

As an example of a system with multiple timescales, radiation from a heated body

in local equilibrium takes away signatures of the temperatures in its radiation spectrum,

but that hardly means that the local equilibrium itself is sustained by the radiation. If a

system is closed and eventually ends up in full equilibrium, then the radiation also has to

be in equilibrium, but otherwise, (massless) radiation is literally the last thing that would

come to equilibrium.

We can illustrate the idea of local thermodynamic equilibrium in open systems using

the quintessential example: a melting cube of ice in a glass of water. For this more familiar

system, around the neighborhood of any point we can define a local temperature. This is

because the time scale of local equilibration is much smaller than the time scale of heat

absorption from the ambiance. (In the case of the Saturn of course, the system is losing

energy, and not absorbing.). For this system, there is no detailed balancing at all scales

as there would be in the case of full equilibrium: ice is absorbing heat from the ambiance

even locally. In fact, this is the reason why eventually it melts! But this does not prevent

us from associating thermodynamical quantities like temperature locally, because local

equilibrium happens through microscopic (molecular) processes. The region over which

the temperature is roughly constant is determined by the relative speeds with which the

microscopic processes and the heat absorption from the ambiance proceed.

The idea of local equilibrium seems to be the context in which to look at black hole

thermodynamics in general, since the picture works equally well for holes with a single

horizon. In fact, the conventional first and second laws of black hole thermodynamics are

easily interpreted in our context. The first law of black hole mechanics is easily applied when

the system is in equilibrium, presumably with a heat bath at the Hawking temperature. The

fact that black holes in flat space (which certainly do not have thermal reservoirs attached

to them) are expected to satisfy this law, is already a hint that local equilibrium is how one

should interpret this. Now, the second law of black hole mechanics says that δA > 0. This

is usually modified to δA+ δSradiation ≡ δSTotal > 0 to take care of the Hawking effect and

then interpreted as valid for the hole+radiation system. Notice that δS > 0 form of the

second law arises from the more general δQ < TδS, only under the assumption that the
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system is closed, δQ = 0. So we see that the first law and the second law are valid as they

stand as thermodynamical laws, for different thermodynamical systems: one for a black

hole in equilibrium with a reservoir, the other for a closed universe with the hole in it. On

the other hand, from the local equilibrium perspective, the laws of black hole mechanics

are valid for the same thermodynamical system. The price to pay is that we are looking

at an open system with loss in the form of Hawking radiation and the laws of black hole

mechanics capture only the other degrees of freedom.

Notice also that it is precisely because of the notion of local equilibrium that we are

allowed to ignore the thermal quantities that are lost to radiation. The characteristic

entropy, charges, etc. of the local phases of Saturn are much larger than those in the

radiation emitted during the time scale required for local equilibration, at least in regimes

where we expect classical descriptions of black holes to hold. In particular, this means that

for the purposes of local equilibria, we are allowed to fix the total ADM mass and angular

momentum of the black Saturn and treat the system as effectively closed.

When we hold M and J fixed, from the explicit solution of ref. [17], this leaves a

2-dimensional moduli space of solutions.4 We want to know which points in this space

are equilibria and of those which points are stable and which are not. A point in the

moduli space is in equilibrium if it is a critical point of the total entropy with respect to

the parameters. The idea of local equilibria and entropy maximization have been used

previously in the context of (AdS) black holes in, for example, [32]. One may wonder

whether it makes sense to sum the entropies of two systems at different temperatures,

but it is this sum whose variation is constrained to be positive by the second law of

thermodynamics.5 Besides, the microscopic entropy of a thermodynamic system, thought

of as its information content or the number of states, is additive over sub-systems. Roughly,

one would expect that if there are (respectively) N1 and N2 microscopic states that realize

the macroscopic states of two subsystems, then the macrostate of the full system can be

realized in N1 × N2 ways. Now when we take the logarithms to define entropies, we see

that they add. In any event, an equilibrium is absolutely stable if it maximizes the entropy,

metastable if it locally maximizes the entropy and unstable otherwise.

The technical details of our extremization problem are spelled out in appendix B. But

it turns out that we can make many consistency checks of our approach based on general

arguments and what is already known in the literature. We explain these below.

In ref. [29] the authors found balanced solutions such that the ring and the hole have

the same temperature and angular velocity. Though the intermediate equations are very

different, we are able to reproduce these in our program. On general grounds, it is easy

to see why this should be so. The argument is a simple application of the first law of

thermodynamics. It turns out [29] that classically, black Saturns satisfy a generalized

4See appendix A for the relevant formulas and the counting of parameters.
5This is true for closed systems. In our case, the radiated entropy during the equilibration time scale is

negligible compared to the black hole/ring quantities, so the system is effectively closed. Notice also that

the horizon area keeps track purely of the microscopic degrees of freedom of the black hole and not the

radiation, and our aim is precisely to compute the macroscopic equilibrium configurations corresponding

to those.
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version of the usual first law:

dM = THdSH + TRdSR + ΩHdJH + ΩRdJR. (1)

Recall that the conventional first law of black hole mechanics is interpreted as a thermo-

dynamic law by assuming that we are looking at the black hole as a system in thermal

equilibrium at a temperature equal to the Hawking temperature of the hole.6 As we have

fixed the total ADM energy, the left hand side of the previous equation vanishes. At a

critical point, assuming that the system is in local equilibrium, the total entropy

S = SH + SR (2)

is extremized and so the variations of the entropies must be opposite

dSH = −dSR. (3)

One can in fact explicitly verify numerically that such variations are allowed in the mod-

uli space of black Saturn solutions. We have fixed the total angular momentum so the

variations of the Komar angular momenta are also opposite

dJH = −dJR. (4)

Combining everything (1) becomes

0 = dSH(TH − TR) + dJH(ΩH − ΩR) (5)

and so, considering arbitrary variations dSH and dJH , the temperatures and angular veloc-

ities must be equal. We will now argue that this argument fails along extremal curves on

which arbitrary variations of dSH and dJH do not exist within the moduli space. We have

also checked that it is precisely these extra points which we find through our approach.

Locally the moduli are easy to understand, they can be parametrized by the Komar

angular momentum and entropy of, for example, the hole. We fix all other degrees of free-

dom by imposing rotational symmetries. The above argument fails because globally these

are not good coordinates for the moduli space. Sometimes there are distinct configurations

with the same hole angular momentum and area. Any path between such a pair intersects

a extremal curve on which these coordinates degenerate. Consider now a path such that

pairs of points reflected across the curve have the same values of angular momentum and

entropy of the hole, and consider the point on which the path intersects the curve. This

situation is represented in figure 1.

On an extremal curve one cannot arbitrarily change the angular momentum and en-

tropy of the hole, instead the entropy is minimized for each angular momentum. To see

this, notice that infinitesimal deformations tangent to the curve change the entropy and

6In this paper, we have relaxed this to allow local equilibria, so the fact that the first law still works with

two different sets of characteristic intensive parameters fits in naturally. The conventional laws of black

hole mechanics arise as a succinct characterization of the thermal nature of the microscopic black degrees

of freedom when we are ignoring the radiation.
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Figure 1: The moduli space of black Saturns that we consider is 2-dimensional. At regular points

AH , the area of the event horizon of the black hole, and JH , the Komar angular momentum of the

black hole, are good coordinates. However for some values of (JH , AH) there are multiple states.

The (JH , AH) coordinate system breaks down on critical curves. When a state is on such a curve,

all radiation between the hole and the ring carries a fixed angular momentum to entropy ratio from

the hole. All nonisothermal equilibria lie on such curves.

angular momentum of the hole with a fixed ratio r. On the other hand, infinitesimal defor-

mations away from the curve along the path instead leave both quantities fixed, since these

quantities are the same on mirror points on the path. Thus on the extremal curve any

small deformation in this moduli space, whether or not it is tangent to the curve, changes

the entropy and angular momentum of the hole with the fixed ratio r. When r is equal to

the ratio of the temperature differences to the angular velocity differences

r =
dSH

dJH
=

ΩR − ΩH

TH − TR
(6)

then (5) is satisfied. As eq. (5) requires dSH = −dSR, the configuration is in equilibrium

even if the temperature and angular momenta differ. We will refer to such equilibria as

nonisothermal, and equilibria in which the temperatures and angular momenta are equal as

isothermal. Critical curves are codimension one in the moduli space, and the condition (6)

places a single additional constraint. Thus nonisothermal equilibria occur at codimension

2, and so at isolated points in the 2-dimensional moduli space of solutions with a fixed

total angular momentum and energy.

We find numerically that nonisothermal equilibria are present when the dimensionless

– 6 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
3

angular momentum is in the window

0.914 < j < 1 (7)

where j is the reduced (dimensionless) angular momentum defined in appendix A. As is

implied by the above argument, all nonisothermal equilibria satisfy eq. (6). Our numerical

results agree with this general consistency requirement.

We will elaborate on some of the features of these non-isothermal extrema in the

following, but before we do we emphasize some caveats.

• The extrema are very non-uniformly distributed in the moduli space. In particular,

there is a lot of structure near the boundary of the moduli space. This means that

numerically scanning for them could conceivably lose some critical points. We are

confident about the curves we have found, but we do not rule out the possibility that

we might have missed some potential critical curves.

• Except for the small window that we mention later, none of the critical curves are

stable. The plots that we show below should be seen with this in mind. Some of

these unstable points correspond to local minima (both eigenvalues of the Hessian are

positive) and others correspond to saddle points (one eigenvalue is negative, the other

is positive). Along a critical curve, the character of the critical point can change.

• In principle there may also be critical points on the extremal curve which extremize

both the JH and SH simultaneously. At such points radiation between the hole and

the ring would, to leading order, transport neither entropy nor angular momentum

and so again the configuration would be an equilibrium.

One may also search for extremal curves in the phase diagram of the Myers-Perry

(MP) black hole. If one fixes the angular momentum of an MP black hole then one can

always change the mass such that it is critically rotating and the area is zero. Thus there

is no critical point where the derivative of the area vanishes. The presence of the ring

changes this, we find extremal curves on which the area of the hole’s horizon is minimized

and nonzero.

The spectrum of isothermal critical points of black Saturn solutions was found in

ref. [29]. It looks like a slightly shifted copy of the black ring phase diagram, with a

somewhat lower entropy and slightly higher minimum angular momentum. In particular,

the area is maximized at the minimal angular momentum, and two branches emerge from

this minimum, both extending to zero entropy. One asymptotes the singular fat black ring

at j = 1, and the other asymptotes to the thin ring at j → ∞. The isothermal critical

points dominate the phase diagram of thermal equilibria, as seen in figure 2. However both

the equilibrium with the highest entropy (which is just the minimal j black ring) and that

with the lowest angular momentum are nonisothermal.

The nonisothermal equilibria are concentrated around the topleft corner. Zooming in

on this region one finds figure 3. This phase diagram is surprisingly rich. The maximal

entropy is considerably higher than the isothermal maximal entropy. In fact, it asymptotes

– 7 –
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Figure 2: The moduli space of equilibria is dominated by the isothermal equilibria, shown on the

left. On the right one sees all of the equilibria, the nonisothermals are localized at small angular

momentum j.

to the minimal angular momentum black ring at j =
√

27/32. On this branch the hole

counter-rotates, with an ever increasing counterangular momentum as the total angular

momentum increases. After two quick switchbacks around j = 0.952, it continues all of

the way to j = 1. The counter-rotation increases to about −0.17 before returning to −0.16

when j = 1. In this limit the hole rotates so quickly that its area and temperature go to

zero, similarly to the extremal MP black hole. So at the end of the extremal curve, the

minimal area is zero, but this only occurs on the counter-rotating branch. The mass of the

extremal black hole is about 12 percent of the total mass.

The minimal angular momentum isothermal equilibrium is by no means the minimal

angular momentum configuration. Instead it is a triple point, where the two isothermal

branches merge into a single nonisothermal, which continues down to j ∼ 0.914 as the hole’s

angular momentum, mass and area increase while its temperature decreases. Meanwhile the

ring shrinks and heats. The endpoint appears to be the real minimum angular momentum

for an equilibrium black Saturn. One other branch exits from it, along which the hole’s

angular momentum and mass continue to increase. At their maximum the hole accounts

for only 30 percent of the mass and 20 percent of the angular momentum of the Saturn. All

of the equilibria are dominated by the ring. Anyway, this branch continues up to j ∼ 0.942,

then down to j ∼ 0.927 and back to j ∼ 0.928 as the hole shrinks again, although at the

end its area grows and temperature decreases slightly. The branch finally ends when the

critical point becomes degenerate, as the second derivatives of the entropy vanish.

None of the equilibria are stable. This is a consequence of the fact that, as was argued

in ref. [29], the absolute maximum entropy occurs when all of the angular momentum is

in a thin massless ring and all of the mass is in a nonspinning Schwarzschild black hole.

However, surprisingly, when j is in the narrow window

0.92457 < j < 0.92463. (8)

the isothermal equilibria on the thin ring branch are local maxima of the entropy and so

are metastable, at least under deformations in our moduli space. The metastability ends

precisely at the triple point, where the second derivative of the entropy functional has a

– 8 –
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Figure 3: The phase diagram of equilibria (most of which are unstable) is much richer than

previously thought. Here are the lowest angular momentum equilibria, where the structure is

the most intricate. The maximum entropy is attained on the upper-left where it asymptotes to

the minimally rotating black ring. On this branch the hole is counter-rotating. It continues to

the lower-right, where the hole becomes so counter-rotating that its area eventually goes to zero at

j = 1. The two isothermal branches go off to the right slightly higher. They meet at the triple point

j = .92457 and form a nonisothermal branch whose continuation yields the rest of the equilibria.

It ends when it becomes degenerate as its second derivatives vanish.

zero eigenvalue, as may be expected at a second order phase transition. The moduli space

of metastable equilibria is displayed in figure 4.

Black rings are known to suffer from radial instabilities along the fat branch and

Gregory-Laflamme instabilities at high values of j along the thin branch [4]. It is not

known whether this unstable region continues all of the way down the thin branch to the

minimal value j =
√

27/32. As has been argued in ref. [29], one expects a similar pattern

for the classical instability of the black ring in a black Saturn. If black Saturns satisfy

the Gubser-Mitra conjecture [32, 33], then one expects thermodynamic stability to occur

in the same range as classical stability. If that is the case, our results suggest that black

Saturns are stable under sufficiently small nonuniform radial perturbations at j < 0.92463

on the thin ring branch. This makes it more plausible that black rings themselves also

have a small window of classical metastability at the low angular momentum end of the

thin ring branch. Of course, Gubser-Mitra is generally known to hold only for cases with

translational invariance, so these comments should be taken as speculative.

One observation we can make here in the Gubser-Mitra context is that if one adds

an additional translationally invariant direction along which the entire solution extends

trivially, then there will be more possible decay modes, as there may be decays in which

there are nonvanishing derivatives along the new direction. However the original decay

modes are still present in the translationally-invariant 6-dimensional solution, they are

the translationally-invariant decay modes. Therefore the addition of a translationally-

invariant direction may only increase the instability. This implies that if a 6-dimensional

translationally-invariant configuration is stable, then so is its 5-dimensional reduction. Sim-

ilarly if the 6-d solution is metastable, then the 5-d solution is either stable or metastable.
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Figure 4: The metastable equilibria are all on the thin ring isothermal branch, in a narrow window

that ends at the minimal angular momentum isothermal equilibrium, a triple point in the phase

diagram where one may expect a second order phase transition.

Our 5-d solution is clearly not absolutely stable, as it has a smaller entropy then a Tangher-

lini black hole with a thin ring, and so a metastable 6-d solution implies a metastable 5-d

solution.

All of this leads one to the question of whether or not to trust our numerical results.

Our equilibria were found independently by both collaborators, using different algorithms.

All points found not to extremize the entropy to within the precision of mathematica,

about 10−16, were then thrown away. The two authors also used different approaches to

determine the metastability, one using each of the two approaches mentioned in the second

appendix. Therefore the existence and possible metastability of the points found has been

well-established. The weakness of our numerical approach is that our scans for critical

points may well not have been exhaustive, and so we may well have missed some branches

of critical points.

In this letter we have seen that the moduli space of black Saturn equilibria does not

quite fit the expectations of ref. [29]. In particular most of the isothermal phases are in

fact unstable. There are also extremal curves on which, for example, for a fixed value

of the angular momenta of each black object, one object has an extremal area. And on

these extremal curves there are unstable equilibria in which the temperatures and angular

velocities of the black objects are not equal. We expect both of these features to be generic

for composite black objects. In an N object system with k conserved quantum numbers

whose totals are held fixed, it is always tempting to characterize the k(N − 1)-dimensional

moduli space by the area and k − 1 quantum numbers of N − 1 objects. While this

parametrization works in general locally, there will in general be codimension 1 extremal

surfaces in the moduli space where the determinant of the Jacobian of the transformation

from good moduli space coordinates to these vanishes.

On such surfaces the ratio of the charges and entropy transported between the objects

will be subject to a single constraint. Such a constraint means that the temperature dif-

ferences and potential differences may conspire, as in eq. (6) to assure that such transport

– 10 –
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never changes the area. All kN − k − 1 ratios of differences of potentials need to conspire,

yielding kN − k − 1 constraints on the (kN − k − 1)-dimensional extremal surface. There-

fore such conspiracies occur generically at isolated points in the moduli space. In such

cases the extremal configurations will be nonisothermal equilibria. More generally there

will be extremal surfaces of higher codimension, embedded in the lower-codimensional ex-

tremal surfaces, at which the possible fluxes are even more restricted. However the same

dimension-counting argument always ensures that equilibria generically occur at isolated

points.

One further question we could ask is about the possibility of black Saturns in AdS. In

recent papers, Minwalla and collaborators [15, 16] have found 2-dimensional dual plasma

configurations (thought of as Scherk-Schwarz reduced from 4D) corresponding to the holes

and rings in AdS. Apart from the cutoff on the angular momentum arising from the AdS

radius, their phase diagrams were tantalizingly similar to those of the flat space black hole

and black ring shown in [29]. They use a rigid rotation ansatz to construct the plasma

configurations, where the configuration has uniform angular velocity. At first this seems

to admit an immediate generalization to include black Saturns, by admitting the plasma

ball and the plasma ring to rotate independently and superimposing such configurations.

We have done this,7 but we find that demanding that the hole and the ring are at the

same temperature and angular velocity eliminates the solution. So at least the plasma

configurations corresponding to the isothermal phases are not allowed in AdS.

How should we read this in the context of our previous results? We saw in the flat

case that except for an extremely tiny window, all the isothermal phases are ruled out.

So our results are mostly in agreement with the general features seen on the plasma side,

and in particular show that the expectations from the isothermal curves of [29] should be

reconsidered. We mention here that to begin with, it is probably not legitimate to expect

more than a rough comparison between AdS and flat holes using the plasma picture: black

holes in flat space are closest to small black holes in AdS because they are unaware of the

curvature of AdS. But the Minwalla et al. plasma approach is designed to handle large AdS

black holes. Besides, there is the fact that AdS black holes have super-radiance, they have

a new scale, their asymptotics is different, not to mention the fact that we don’t have exact

solutions in AdS. But despite all this, we find it encouraging that the expectations from

plasma Saturns have some qualitative similarities with our flat space results. In particular,

the window of metastability is at the very tip of the cusp, which is what would correspond

to black holes at a scale much smaller than the AdS radius - precisely the place where the

plasma predictions for large black holes can potentially break down.

One obvious direction here is to try a local equilibrium analysis directly on the plasma

side to see if there are phases other than the ones we found in flat space. The thermody-

namical quantities associated with the hole and the ring can both be written down easily

for plasma following [15], so this should be a numerically tractable problem.

7We do not present the computations here, because they only require minor adaptations from those

of [15].
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A. Black Saturn formulas

In this section we collect the formulas associated to the black Saturn solution that we use

for our numerics. These results are taken from [17]. The moduli space of black Saturns

can be parameterized by three dimensionless numbers κ1, κ2, κ3 and an overall length scale

L. The κi satisfy 0 ≤ κ3 ≤ κ2 < κ1 ≤ 1. The degenerate cases correspond to MP black

holes and rings, which we are not interested in. In what follows,

c̄2 ≡
1

κ2

[

κ1 − κ2
√

κ1(1 − κ2)(1 − κ3)(κ1 − κ3)
− 1

]

.

Angular Velocities of the Horizons:

ΩH =
1

L

[

1 + κ2 c̄2

]

√

κ2κ3

2κ1

κ3(1 − κ1) − κ1(1 − κ2)(1 − κ3)c̄2

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3)c̄
2
2

, (A.1)

ΩR =
1

L

[

1 + κ2 c̄2

]

√

κ1κ3

2κ2

κ3 − κ2(1 − κ3)c̄2

κ3 − κ3(κ1 − κ2)c̄2 + κ1κ2(1 − κ3)c̄2
2

. (A.2)

Horizon Areas:

AH = 4L3π2

√

2(1 − κ1)3

(1 − κ2)(1 − κ3)

1 + κ1κ2(1−κ2)(1−κ3)
κ3(1−κ1) c̄2

2
(

1 + κ2 c̄2

)2 , (A.3)

AR = 4L3π2

√

2κ2(κ2 − κ3)3

κ1(κ1 − κ3)(1 − κ3)

1 − (κ1 − κ2)c̄2 + κ1κ2(1−κ3)
κ3

c̄2
2

(

1 + κ2 c̄2

)2 . (A.4)

Horizon Temperatures:

TH =
1

2Lπ

√

(1 − κ2)(1 − κ3)

2(1 − κ1)

(

1 + κ2 c̄2

)2

1 + κ1κ2(1−κ2)(1−κ3)
κ3(1−κ1) c̄2

2

, (A.5)

TR =
1

2Lπ

√

κ1(1 − κ3)(κ1 − κ3)

2κ2(κ2 − κ3)

(

1 + κ2 c̄2

)2

1 − (κ1 − κ2)c̄2 + κ1κ2(1−κ3)
κ3

c̄2
2

.
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Komar Masses of Hole and Ring:

MH =
3πL2

4G

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3) c̄2
2

κ3(1 + c̄2 κ2)
, (A.6)

MR =
3πL2

4G

κ2

[

1 − (1 − κ2) c̄2

][

κ3 − κ3(κ1 − κ2) c̄2 + κ1κ2(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)2
. (A.7)

Komar Angular Momenta:

JH = −
πL3

G

√

κ1κ2

2κ3

c̄2

[

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)2
, (A.8)

JR =
πL3

G

√

κ2

2κ1κ3
(A.9)

×

[

κ3 − κ2(κ1 − κ3) c̄2 + κ1κ2(1 − κ2) c̄2
2

][

κ3 − κ3(κ1 − κ2) c̄2 + κ1κ2(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)3
.

The total (ADM) mass and angular momentum are the sum of the two pieces:

M =
3π L2

4G

κ3(1 − κ1 + κ2) − 2κ2κ3(κ1 − κ2)c̄2 + κ2

[

κ1 − κ2κ3(1 + κ1 − κ2)
]

c̄2
2

κ3

[

1 + κ2c̄2

]2 (A.10)

and

J =
π L3

G

1

κ3

[

1 + κ2c̄2

]3

√

κ2

2κ1κ3

[

κ2
3 − c̄2κ3

[

(κ1 − κ2)(1 − κ1 + κ3) + κ2(1 − κ3)
]

+c̄2
2κ2κ3

[

(κ1 − κ2)(κ1 − κ3) + κ1(1 + κ1 − κ2 − κ3)
]

−c̄3
2κ1κ2

[

κ1 − κ2κ3(2 + κ1 − κ2 − κ3)
]

]

. (A.11)

The problem we undertake is a constrained extremization of the total surface area

A = AH + AR, under the condition that M and J are fixed. The computational difficulty

of the problem can be reduced by noting that the overall scale L can be eliminated by

fixing the mass. Indeed, we can define

j2 =
27π

32G

J2

M3
, ai =

3

16

√

3

π

Ai

(GM)3/2
,

ωi =

√

8

3π
Ωi(GM)1/2 , τi =

√

32π

3
Ti(GM)1/2 ,

(A.12)

and consider the equivalent problem of extremizing a = aH +aR with fixed j2. This means

that locally there are two moduli left unfixed. In the above, i = H,R. We will refer to

these new variables as the reduced variables: their advantage is that now they depend only

on the dimensionless parameters κi an not on L. The scaling freedom of classical general

relativity has been used to eliminate L (or equivalently M).
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B. Lagrange multipliers and the Hessian

We will use Lagrange multipliers to explain our extremization. One can also work more

directly by looking at the variations and constraining them, but this gives identical results

(as it should).

Our aim is to extremize a = aH + aR while fixing j to some specific value j0. So we

define

F (κ1, κ2, κ3, λ) = a(κ1, κ2, κ3) − λ (j(κ1, κ2, κ3) − j0) (B.1)

and the equations that need to be solved are the partial derivatives of F (with respect to

λ, κi) set to zero:

a1 − λj1 = 0, a2 − λj2 = 0, a3 − λj3 = 0, and j = j0. (B.2)

Here, subscripts denotes partial derivatives with respect to the corresponding κ. We can

eliminate λ, and obtain a set of expressions which are immediately amenable to numerics:

a1j2 − a2j1 = 0, a2j3 − a3j2 = 0, j − j0 = 0. (B.3)

To be consistent, we also need to check that the points we find this way also satisfy

a3j1 − a1j3 = 0. We have solved these equations using two different numerical scanning

strategies and found agreement.

The isothermal curves of [29] are obtained by solving

τH = τR, ωH = ωR, j − j0 = 0. (B.4)

Despite the different form that the equations take, we are also able to reproduce these

curves from (B.3).

The next step is to check whether the entropy is a local maximum on the constraint

surface. For this we have to define a notion of negative definiteness for the Hessian of F . If

we denote the constraint surface8 by M , then a bit of thought (or a computation involving

changes of charts) shows that at a critical point p in the moduli space which is a solution

of (B.2), we should study the Hessian

H =
∂2F

∂κi∂κj

∣

∣

∣

p
, (B.5)

but restricted to TpM . Notice in particular that there is no derivative with respect to the

Lagrange multiplier in the Hessian. To test its negativity, we need to show that V T HV is

negative for any vector V lying on TpM . In practice, since H is a 3× 3 matrix and TpM is

2-dimensional, it is more convenient to first project H to a 2× 2 matrix using a matrix X:

h = XT HX. (B.6)

8i.e., the space (j − j0)
−1{0}, the preimage of the real number zero when j − j0 is thought of as a map

from the moduli space to R.
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Here X is a 3 × 2 matrix whose columns form a basis for TpM . We can construct a basis

for TpM just knowing that j − j0 is constant over M and hence

j1δκ1 + j2δκ2 + j3δκ3 = 0, (B.7)

where δκi can be thought of as motions along the tangent space. From this we can extract

two independent commuting vector fields, which we take to be

v1 =







1

0

−
j1
j3






, v2 =







0

1

−
j2
j3






.

So finally to check for local metastable equilibria, we need to check whether the matrix

h =

(

vT
1

vT
2

)







F11 F12 F13

F21 F22 F23

F31 F32 F33







(

v1 v2

)

=





F11 − 2F13
j1
j3

+ F33

( j1
j3

)2
F12 − F13

j2
j3

− F23
j1
j3

+ F33
j1j2
j2

3

F21 − F13
j2
j3

− F23
j1
j3

+ F33
j1j2
j2

3

F22 − 2F23
j2
j3

+ F33

( j2
j3

)2



 (B.8)

has only negative eigenvalues at the critical point in question. Notice that when writing

the final expression it is understood that we have solved for λ in terms of the ji using (B.2)

to express Fij without invoking the Lagrange multiplier. This is done after everything else,

because we don’t want the derivatives in κi to hit the λ. While doing numerics, we should

check that the values of λ obtained from the three equations in (B.2) coincide. Otherwise,

it is a spurious critical point. This check automatically ensures that we are not making any

errors by counting points in M where derivative(s) of j with respect to κi vanish. We also

mention that once we have (B.8) at hand and once we have the critical points, checking

the character of a critical point is numerically trivial.
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